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Trigonal Symmetry in Electron Diffraction Patterns from Faulted Graphite 
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Electron-diffraction patterns both with hexagonal and trigonal symmetry were obtained from graphite. 
The trigonal patterns are shown to arise from a stacking fault on the basal plane. This observation is a 
consequence of the dependence of the pattern symmetry on the symmetry of the whole crystal, not only 
the symmetry of the unit cell. 

Introduction 

The possibility of measuring the unit-cell symmetry of 
a crystal by convergent-beam electron diffraction has 
been treated both theoretically and experimentally (e.g. 
Gjonnes & Moodie, 1965; Goodman & Lehmpfuhl, 
1964, 1968). However, the symmetry observed in the 
diffraction pattern depends on the symmetry possessed 
by the scattering crystal as a whole, which need not be 
that of its unit cell. Evidence of this in the case of 
graphite is reported here and shown to be due to 
stacking faults on [0001]. 

Pyrolytic graphite* having a high degree of perfec- 
tion was examined in a convergent-beam electron 
diffraction camera (as described by Cockayne, Good- 
man, Mills & Moodie, 1967) at 79 kV. The specimens 
consisted of large sheets of graphite having a constant 
thickness. The [0001] zone convergent-beam patterns 
were of two types, one with 6-fold symmetry and the 
other with 3-fold symmetry (Figs. 1 and 2). Sufficient 
translation of the crystal changed the pattern symmetry 
from one type to the other, the transition point coin- 
ciding with a region of distorted crystal as shown by 
the Kossel line pattern. This, coupled with the sym- 
metry change, suggested that a region of stacking 
faulted crystal corresponded to the observed 3-fold 
symmetry and this hypothesis was tested by computa- 
tion and against the symmetries predicted by dyna- 
mical theory. Hoerni (1950) observed similar patterns 
but the true symmetry of the 3-fold pattern was ob- 
scured. 

Diffraction pattern symmetry 

In recent years the means to analyse various elements 
of diffraction symmetry in dynamic electron diffraction 
experiments have been developed (Gjonnes & Moodie, 
1965; Goodman & Lehmpfuhl, 1968; Pogany & 
Turner, 1968). These means and an extention of them 
can be used to deduce the diffraction symmetry to be 

* Kindly supplied by Professor P. L. Walker Jr, Pennsyl- 
vania State University, U.S.A. 

expected from graphite, both when perfect and con- 
taining a stacking fault. 

(a) Symmetry of graphite 
Owing to the problem of obtaining perfect crystals, 

the exact structure of graphite is not yet known. Two 
possilities are reported differing in whether or not the 
atom layers are puckered. For plane layers the atoms 
lie in (b) and (c) of the space groupt P63/mmc (Bernal, 
1924). If the layers are puckered the atoms lie in 2(a) 
and 2(b) of the space group P63mc, which differs only 
by the lack of mirror plane perpendicular to the sixfold 
screw axis. Bernal, on the basis of rough intensity 
measurements, deduced that any puckering .would 
produce atomic deviations of less than + 0.2 A from 
planarity. It will become evident that the uncertainty 
of the existence of this mirror plane does not affect any 
conclusions arrived at. 

(b) Diffraction symmetry of perfect graphite 
In perfect hexagonal graphite (AB stacking) there 

are three mirror planes parallel to the three (1120)-type 
planes. As shown by Goodman & Lehmpfuhl (1968), 
for zero layer interactions, these result in three lines 
of reflexion in the zone axis pattern along the reciprocal 
lattice directions [10T0]*, [0110]* and [1T00]*. These 
directions are along the lines marked C in Fig. 3. In 
addition, axial glide planes exist at right angles to the 
mirror planes and these result in three more lines of 
reflexion along the pattern directions [1120]*, [1210]* 
and [2]]0]* labelled H in Fig. 3. Goodman & Lehm- 
pfuhl confined their discussion to zero-layer interactions. 
However, their results also apply in this instance to 
upper-layer interactions, as it can be shown, using 
arguments similar to those of Gjonnes & Moodie 
(1965), that a mirror or glide plane perpendicular to 
the faces of a parallel-sided crystal will always result in 
mirror lines appearing in the normal incidence pattern. 

Consequently the zone-axis diffraction pattern 
should contain six lines of reflexion spaced at 30 ° 
intervals as confirmed by Fig. 1. 

]" Bernal gives the incorrect space group P63/mcm. 



90 E L E C T R O N  D I F F R A C T I O N  P A T T E R N S  F R O M  F A U L T E D  G R A P H I T E  

(c) Diffraction symmetry from faulted graphite 
The effect of a stacking fault in graphite is to 

introduce into the crystal a section of rhombohedral 
structure (ABC stacking) having a space group R3m 
(Lipson & Stokes, 1942). 

It is instructive to consider the symmetry of a com- 
pletely rhombohedral crystal as the symmetry of a 
faulted crystal can be no greater. The projected struc- 
ture has six mirror planes at 30 ° intervals, hence zero- 
layer interactions will result in a centrosymmetric 
zone-axis pattern with six mirror lines. Upper layer 
interactions will destroy three of the mirror lines at 
60 ° intervals, those marked H in Fig. 3, and thus the 
centrosymmetry of the pattern, as the three-dimensional 
symmetry (R-3m) has only 3 separate glide or mirror 
directions. However, the effect of upper layers will be 
weak in a perfect rhombohedral crystal as the normal 
axis is 10 A in length. It is not clear whether a hexagonal 
crystal with one fault will show a strong trigonal pat- 
tern or not. One might propose by simple scattering 
power arguments that the trigonality would be weak 
when the fault plane was close to the surface of the 
crystal, but the strength of the effect at intermediate 
depths is not obvious. As a result it was decided to 
make dynamical calculations to test directly the sensi- 
tivity of the zone-axis pattern to the presence of a 
stacking fault. 

Calculations 

The calculations were performed using the multi-slice 
technique of Goodman & Moodie (1965) which is based 
on the theory of Cowley & Moodie (1957). This method 
can be made as precise or, by sacrificing some precision, 
as rapid as possible, depending on requirements. In 
addition, the introduction of a stacking fault is trivial, 
as is shown later. The validity of the technique is well 
proven both theoretically (Moodie, 1972) and by agree- 
ment with experiment (Goodman & Lehmpfuhl, 1967) 
and the departure of a practical calculation from the 
exact theoretical result can be easily tested by a method 
due to Moodie (1965). 

For the purpose of calculation, the crystal was 
divided into slices 13.4 A in thickness (4 carbon atom 
layers stacked ABAB), which is considerably thicker 
than that used when precision is important, and 61 
beams symmetrically disposed about the 0001 axis 
were included. These conditions were estimated by 
using the technique referred to above and by compar- 
ison with precise calculations, to result in a relative 
accuracy of approximately 3 % between the calculated 
intensities of diffracted beams. However, the accuracy 
of representation of the symmetry operators was 
always that of the computer manipulations ( ~  1 in 
1012). 

To facilitate comparison with experiment the cal- 
culation was carried out at 160 different directions in 
one half of the incident cone, constituting a semi- 
circular area of each convergent-beam disc. The as- 
sumption of three trigonally related mirror lines in the 

diffraction pattern of index [10T0]*, [01T0]* and [1T00]* 
then allowed the reconstruction of the remainder of 
each disc without further calculation. These mirror 
lines (C in Fig. 3) result from mirror planes common 
to both the hexagonal and rhombohedral forms and 
so are unaffected by stacking faults. The calculations 
were made at points at intervals of radius/10 to form 
a rectangular grid over the disc. This grid proved to be 
too coarse, resulting in an apparent lack of perfect 6- 
or 3-fold symmetry (e.g. Figs. 4 and 5). However, 
check calculations at hexagonally related points in the 
disc showed the appropriate perfect symmetry and 
that all the discrepancies of symmetry were introduced 
by the processing of the output and not in the calcu- 
lation. 

The multi-slice calculation evaluates the wave-function 
at the exit face of a crystal slice in terms of that at its 
entrance face, using the result as the input wave-function 
for the next slice. A shift in origin of this input wave- 
thnction at the slice corresponding to the depth of the 
stacking fault is all that is required to introduce a fault 
whose plane is parallel to the entrance and exit surfaces 
of the crystal. The shift used was ½, -½  (Amelinckx & 
Delavignette, 1960). 

(a) Results 
The crystal thickness was measured at ,,,520/~ 

from the fine structure spacing of a high-order reflexion 
and 61 beam calculations made for both unfaulted and 
faulted cases. The agreement with experiment can be 
clearly seen by the comparison made in Figs. 4 and 5. 

The sensitivity of the pattern to fault depth was 
demonstrated by results of another calculation. These 
showed the trigonality to decrease as the fault plane 
approaches the surface of the crystal. However, there 
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Fig. 3. Lines of mirror symmetry in the diffraction pattern of 
graphite as deduced from dynamical theory. C, lines common 
to both hexagonal and rhombohedral forms. H, lines from 
the hexagonal form only. 
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Fig. 1 A zone-axis convergent-beam diffraction pattern from 
graphite showing 6-fold rotational symmetry. Thickness ap- 
proximately 520 A. 

Fig.2. A zone-axis pattern from a crystal region adjacent to 
that used for Fig. 1 showing 3-fold symmetry. 

[To face p. 90 
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Fig. 4. Computed angular distributions for various orders from 
an unfaulted graphite crystal 520 A thick (lower row) com- 
pared with the appropriate distributions from Fig. 1 (upper 
row). 

1120 0110 1010 0000 

Fig. 5. Similar to Fig. 4, except that the calculation included a 
fault at 260 A and the comparison is made with distributions 
from Fig.  2. 

0000 1010 01i 0 1120 

Fig. 6. Comparison of computed distributions for crystals 550 ,& 
thick. Upper row: a fault 26 A from the entrance face; 
lower row: a fault 26 A from the exit face. 



A. W. S. J O H N S O N  91 

should be sufficient effect to reveal a fault 6 A_ from 
the surface of a 500 A thick crystal. 

The reflexions fall into two groups, one in which 
the distributions depend strongly on the position of 
the fault plane and the other in which they are relatively 
intensitive. Reflexions having indices of the form 
h - k  = 3n are, excluding the central beam, members of 
this latter group. 

It is interesting to consider the relation between the 
pattern from a crystal of thickness h with a fault at a 
depth t and that of a second crystal of the same thick- 
ness but with a fault at a depth ( h -  t). Since the second 
crystal can be transformed into the first by a rotation 
about the fault displacement vector, one can at once 
apply the reciprocity theorem* to the central beam 
distributions to show that they should be equal. Such 
a result was predicted by Howie & Whelan (1961) and 
the computed distributions in Fig. 6 show the equality. 
The case of the diffracted beams is different. The cal- 
culated distributions (Fig. 6) show a similarity which 
can be discussed quantitatively and will be described 
in a forthcoming publication (Johnson & Moodie, 
1972). 

Only the zone-axis pattern has been used to establish 
the presence and depth of a stacking fault. Other 
orientations may be superior for the purpose, notably 
those simultaneously exciting two equivalent adjacent 
reflexions of the set h - k # 3 n ,  e.g. 4040 and 0440. 
Having obtained a method for the selection of un- 
faulted crystals it is now possible to make accurate 
measurements of the Fourier coefficients by the con- 
vergent-beam method, thus establishing the precise 
structure of graphite and providing data for comparison 
with theory. Finally, accurate measurement of fault 
depth will be of interest in connexion with the deter- 

* Applications of this theorem to dislocations are given by 
Pogany & Turner (1968). 

mination of stacking fault energy from the separation 
of partial dislocations, as the separation is dependent 
on the depth of the fault plane (Spence, 1962; Siems, 
Delavignette & Amelinckx, 1962). 

It is a pleasure to acknowledge P. Goodman and 
A. F. Moodie for their interest and discussion and 
D. F. Lynch, J. E. Paine and R. J. Hurle for assistance 
with the computation. 
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